Unfolding the Sulcus

نویسنده

  • Christian D. Santangelo
چکیده

Even as we probe physics on ever-smaller scales, materials that can be held and manipulated with our hands often still resist our understanding. Elastic materials, in particular, still confound because of the nonlinear relationship between strain and the displacement of the material needed to maintain the rotational invariance of the elastic energy. The effects of these nonlinearities are often more pronounced at free surfaces, where strain can be alleviated by a large rotation of the surface. When a slab of an elastic material such as rubber is compressed, it develops a sulcus—a sharp furrow in its surface that plunges into the material. First reported for photographic gelatin films over one hundred years ago, they are not just a laboratory curiosity. Sulci create large strains that can lead to material failure. They are also a common motif in the morphogenesis of many organs, most famously in the characteristic folds on the surface of the human brain or, say, the arm of an infant [see Fig. 1(a) and (b)]. Though a mechanism for the formation of a sulcus was proposed almost fifty years ago [1], a complete understanding has remained elusive [2– 6]. Now, in a paper appearing in Physical Review Letters, Evan Hohlfeld from Harvard University and Lawrence Berkeley National Laboratory and L. Mahadevan from Harvard University have proposed that the formation of a sulcus is controlled by a new type of instability dominated by nonlinearities in the elastic energy [7]. Their case is bolstered both by detailed numerics and by experiments. Moreover, they suggest that similar nonlinear instabilities may be lurking behind the formation of many other singular structures found in materials. In the calculation of Biot, a free surface of a compressed elastic material becomes unstable at a critical strain of 45.6% [1]. Indeed, experiments show that a compressed slab forms sharp furrows above some critical strain. Rather than develop as an instability, however, the sulci in experiments nucleate and grow laterally as fully formed furrows. Moreover, this often occurs at a lower strain of 35% [2–4], noticeably smaller FIG. 1: Localized folds, called sulci, induced on soft materials due to compressive stresses are ubiquitous in nature: (a) the arm of an infant, (b) a primate brain. (c) Schematic illustration of a bifurcation diagram showing the scaled height h of a sulcus plotted against the applied strain. A sulcus nucleates at a critical strain ec due to a spontaneous breaking of scale symmetry. (Credit: (a),(b) E. Hohlfield and L. Mahadevan [7])

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of cortical unfolding techniques to functional MRI of the human hippocampal region.

We describe a new application of cortical unfolding to high-resolution functional magnetic resonance imaging (fMRI) of the human hippocampal region. This procedure includes techniques to segment and unfold the hippocampus, allowing the fusiform, parahippocampal, perirhinal, entorhinal, subicular, and CA fields to be viewed and compared across subjects. Transformation parameters derived from unf...

متن کامل

Unfolding X-ray spectrum in the diagnostic range using the Monte Carlo Code MCNP5

Introduction: Unfolding X-ray spectrum is a powerful tool for quality control of X-ray tubes. Generally, the acquisition of the X-ray spectrum in diagnostic radiology departments is complicated and difficult due to high photon flux. Measurement of x ray spectra using radiation detectors could not be performed accurately, because of the pulse pile up. Therefore, indirect methods...

متن کامل

Unfolding the sulcus.

Sulci are localized furrows on the surface of soft materials that form by a compression-induced instability. We unfold this instability by breaking its natural scale and translation invariance, and compute a limiting bifurcation diagram for sulcfication showing that it is a scale-free, subcritical nonlinear instability. In contrast with classical nucleation, sulcification is continuous, occurs ...

متن کامل

Influence of heparin molecular size on the induction of C-terminal unfolding in β2-microglobulin

Dialysis-related amyloidosis (DRA) is characterized by accumulation of amyloid β2-microglobulin (β2m) in the interstitial matrix. Matrix substances such as heparin have reportedly been strongly implicated in the pathogenesis of dialysis-related amyloidosis. In clinical setting of hemodialysis, two types of heparin, i.e., high and low molecular heparin (H.M.H. and L.M.H.) have been routinely use...

متن کامل

The Representation of Iran in Englishcentral Educational Website: Unfolding the Hidden Curriculum

Despite their widespread popularity and rapid growth, the Internet-mediated English educational materials for learners of English as a foreign/second language (FL/SL) have rarely been analyzed in terms of their potential hidden curriculum. Accordingly, the present study aims to address this need through conducting a CDA investigation into some lessons which are randomly selected from an English...

متن کامل

Attached gingival width and gingival sulcus depth in three dentition systems

  Objectives: Attached gingival width (AGW) is an important marker for diagnosis of periodontal disease and normal gingival sulcus depth (GSD) is a sign of healthy periodontium. The aim of this study was to determine the AGW and GSD in3-15 year-olds with three dentition systems in Isfahan in 2001.   Methods: A total of 360 students (120 students in each system) eligible for this cross sectional...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011